Current and predicted distribution of the pathogenic fungus *Batrachochytrium dendrobatidis* in Colombia, a hotspot of amphibian biodiversity

Sandra V. Flechas1,12,*, Andrea Paz1,2,†, Andrew J. Crawford1,3,4, Carolina Sarmiento1,3, Aldemar Acevedo5, Alejandro Arboleda6,1, Wilmar Bolivar-Garcia, Claudia L. Echeverry-Sandoval8, Rosmery Franco6, Cindy Mojica7, Amanda Munoz7, Pablo Palacios-Rodriguez1,8, Andrés M. Poss- Terranova9, Paulina Quintero-Marín1, Luis A. Rueda-Solano10, Fernando Castro-Herrera11, and Adolfo Amézquita1

1 Department of Biological Sciences, Universidad de los Andes, Bogotá, AA 4976, Colombia
2 Department of Biology, Graduate Center, City University of New York, New York, NY 10016, USA
3 Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panama City, Republic of Panama
4 Círculo Herpetológico de Panamá, Apartado, 0824–00122, Panama City, Republic of Panama
5 Grupo de Investigación en Ecología y Biogeografía (GIEB), Universidad de Pamplona, Pamplona, Colombia
6 Universidad del Cauca, Popayán, Colombia
7 Grupo de Investigación en Ecología Animal, Universidad del Valle, Cali, Colombia
8 Universidad Tecnológica del Chocó ‘Diego Luis Córdoba’, Quibdó, Colombia
9 Universidad Nacional de Colombia, Sede Palmira, Colombia
10 Universidad del Magdalena, Santa Marta, Colombia
11 Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia

ABSTRACT

Global amphibian declines have been attributed to several factors including the chytrid fungal pathogen, *Batrachochytrium dendrobatidis* (*Bd*), that infects hosts’ skin and causes death by inhibiting immune response and impairing osmoregulatory function. Here, we integrate extensive new field data with previously published locality records of *Bd* in Colombia, a megadiverse and environmentally heterogeneous country in northwestern South America, to determine the relative importance of environmental variables and reproductive mode for predicting the risk of *Bd* infection in amphibians. We surveyed 81 localities across Colombia and sampled 2876 individual amphibians belonging to 14 taxonomic families. Through a combination of end-point PCR and real-time PCR analyses, *Bd* was detected in 338 individuals (12%) representing 43 localities (53%) distributed from sea level to 3200 m. We found that annual mean temperature and variables related with seasonality in precipitation and temperature appeared to define the most suitable areas for the establishment of the pathogen. In addition, prevalence of infection appeared to be higher in species with a terrestrial reproductive mode. Our study provides the first large-scale study of the current and potential distribution of *Bd* in the biodiversity hotspot centered on Colombia. We hope the newly provided information on the extent of the distribution of the pathogen and the potential areas where *Bd* may impact the amphibian fauna will inform decision making by environmental authorities and future conservation action.

Abstract in Spanish is available with online material.

Key words: amphibians; chytridiomycosis; habitat suitability; species distribution model; temperature; water dependence.

Received 25 May 2016; revision accepted 22 March 2017.
*These authors contributed equally to this work.
†This is a posthumous publication.
Corresponding author; e-mail: vickyflechas@gmail.com

© 2017 The Association for Tropical Biology and Conservation
osmoregulatory function of the skin (Voyles et al. 2009, Campbell et al. 2012) and affecting the host’s immune response (Fites et al. 2013).

Bd-related declines were first noted in tropical areas (Lips et al. 2006), especially montane sites (Bradford 1991, Wake 1991, Laurance et al. 1996, Berger et al. 1998, Lips 1998). *Bd* thrives at cool temperatures between 17 and 25°C but cannot tolerate desiccation at any point in its life cycle (Piotrowski et al. 2004). Both characteristics may explain, in part, why chytridiomycosis appears particularly problematic for mid- to high-elevation populations (Daszak et al. 1999) and for riparian species (Daszak et al. 1999, Lips et al. 2003, Woodhams & Alford 2005, Kriger & Hero 2007). In addition, amphibians inhabiting higher elevations may be more susceptible to chytridiomycosis due to reduced or suppressed immune responses at lower ambient temperatures, where thermoregulatory opportunities are restricted (Carey et al. 1999).

Although most research on amphibian declines has focused on montane environments, a growing body of evidence suggests that *Bd* may also be widespread in lowlands (Heyer et al. 1988, Kilburn et al. 2010, Flechas et al. 2015) and causing population declines (Whitfield et al. 2007, 2012). However, these events are rarely observed in tropical lowlands.

Two main approaches have been used to understand the presence and prevalence of *Bd* around the globe. The first approach seeks to explain the taxonomic variation among hosts in *Bd* prevalence and in amphibian declines by looking at host-specific traits to understand why some amphibians readily succumb to chytridiomycosis, while other species may act as asymptomatic carriers (i.e., reservoirs) of the pathogen. For example, close association with water bodies has been linked with increased vulnerability to the disease (Lips et al. 2003, Hero et al. 2005, Bielby et al. 2008). In addition, various studies suggest that variation among amphibian hosts in their response to *Bd* infection has a phylogenetic component (Hero et al. 2005, Bielby et al. 2008, Guayasamin et al. 2014). Within a single community or locality, however, declines may be random with respect to shared evolutionary history among host species, and affect a subset of species within each taxonomic family (Crawford et al. 2010). Thus, the phylogenetic patterns may be confounded with geographic distribution or environmental variables.

The second approach to understanding the distribution of *Bd* and chytridiomycosis seeks to explain spatial variation in *Bd* prevalence by considering climatic parameters to predict the probability of *Bd* presence through abiotic climatic envelope modeling (Peterson 2001). Previous studies have shown that temperature may account for a large fraction of among-locality variation in the prevalence of the pathogen (Puschendorf et al. 2009, Rohr & Raffel 2010), as expected given the thermal biology of *Bd* (Piotrowski et al. 2004, Woodhams et al. 2008), i.e., cooler temperatures promote the growth of the pathogen to the detriment of the host (Russell et al. 2010). In the field, however, *Bd* may be affected by the interaction of multiple environmental factors, especially in climatically heterogeneous regions.

In Colombia, recent reports have begun to shed light upon the extent of *Bd* prevalence, but these studies have been restricted in geographical scope (Ruiz & Rueda-Almonacid 2008, Velásquez-Escobar et al. 2008, Urbina & Galeano 2011, Flechas et al. 2012, 2015, Vasquez-Ochoa et al. 2012, Acevedo et al. 2016a,b). Colombia harbors the second most diverse amphibian fauna in the world (AmphibiaWeb 2016) and is also host to the recently evolved strain of *Bd* known as the global panzootic lineage (GPL) (Flechas et al. 2013, Rosenblum et al. 2013). Despite these recent reports, little is yet known about the geographic distribution of the pathogen or the spatial extent of disease. Given these gaps in our knowledge, we have undertaken a broad survey of *Bd* in wild amphibian populations using non-invasive molecular techniques. Moreover, because differences in susceptibility may be due to characteristics of the host or of the environment, we used natural history traits of the host along with spatial climatic parameters to predict the probability of *Bd* presence. Specifically, we tested (1) whether amphibian species breeding in close association with water are more likely to carry *Bd*, and (2) whether climatic variables influence the probability of *Bd* occurrence. The performance of predictive models is known to depend on the natural range of variation of the predictor variables. The extreme environmental heterogeneity presented by our sampling sites across Colombia, including lowland sites, should thus improve the chances of identifying biologically relevant predictors for *Bd* presence in the country.

METHODS

FIELD SAMPLING.—In this study, six research teams obtained 2876 swab samples from 81 localities (Fig. 1, Table S1), particularly, in Andean areas, where the majority of amphibian species are found (Lynch et al. 1997). Swabbing protocols in the field were standardized among the surveying teams following the protocol by Hyatt et al. (2007). To determine infection status, adult and post-metamorphic juvenile amphibians were sampled during diurnal and nocturnal surveys between June 2007 and February 2012 using visual and acoustic searches. Whenever possible, several microhabitats were surveyed within each locality, including streams, ponds, open areas, and forests. To avoid cross contamination, animals were collected using clean, decontaminated equipment, individually handled with fresh disposable gloves, and placed in new plastic bags prior to obtaining skin samples. Each animal was sampled by running a synthetic cotton swab (MW100; Medical Wire & Equipment, Corsham, UK) ten times over the drink patch, the inner thigh area, and the plantar surface of the hind feet webbing for a total of 50 strokes (Hyatt et al. 2007). Skin swabs were preserved in the field either in 96 percent ethanol or dry and then stored at −20°C until processing. To avoid repeated sampling of the same individual, all frogs were left in plastic bags for up to 6h during sample collection and released upon completion of each local survey. At eight localities, a subsample of frogs was collected as voucher specimens and tissue samples to confirm field identifications through morphological and molecular taxonomic procedures. Results of DNA barcoding surveys are published in Guarnizo et al. (2015).
Each reaction consisted of 0.5 μL of GoTaq® Green Master Mix (1X; Promega, Madison, Wisconsin, U.S.A.), and 2 μL of the DNA extraction. Amplified fragments were separated by electrophoresis in 1 percent agarose gels. For qPCR, we followed the recommendations of Hyatt et al. (2007) and Boyle et al. (2004). DNA was extracted using PrepMan Ultra (Thermo-Fisher Scientific, Waltham, Massachusetts, U.S.A.). Each real-time PCR reaction consisted of 0.8 μL (18 μM) of each primer ITS1 (5'-CCCTGTATAATACGTGTGCGCATATGC-3') and 5.8S (5'-AGCCAAGATCCGTGTGCAAA-3'), 10 μL of TaqMan, 1.0 μL (5 μM) of MGB Probe, 2.0 μL Exo IPC mix, 0.4 μL Exo IPC DNA (ThermoFisher Scientific), and 5.0 μL of the DNA extract. Amplification conditions consisted of 2 min at 50°C, 15 min at 95°C followed by 50 cycles of 15 sec at 95°C, and 1 min 60°C. Products were run on a BIO-RAD CFX96 PCR machine (Hercules, California, U.S.A.) and a BIO-RAD DNA Engine with CHROMO 4 Alpha block assembly.

DIAGNOSING BD INFECTION.—Our study integrated efforts from several research groups, which led to the use of two techniques to diagnose Bd infection: end-point PCR and real-time PCR (i.e., quantitative or qPCR). Most of the samples were analyzed at Universidad de los Andes in Bogotá using either diagnostic techniques. A total of 94 samples from Chocó were diagnosed at Universidad Nacional de Colombia sede Palmira using qPCR. We ran end-point PCR tests on samples from 13 localities above 1000 m in elevation and from 23 localities under 1000 m. We conducted qPCR on samples from 29 localities above 1000 m in elevation and on samples representing 16 localities under 1000 m. For end-point PCR, DNA was extracted using GeneReleaser® (Bioventures Inc., Murfreesboro, Tennessee, U.S.A.). We used the following primers developed by Annis et al. (2004) to amplify the ITS1-ITS2 region in Bd: Bd1a (5'-CAGTGTGCCCATATGTACG-3') and Bd2a (5'-CATGGTTCCATCTGTCCAG-3'). Amplifications were performed using an MJ Research Peltier Thermal Cycler (PTC-200; Hercules, California, U.S.A.), as follows: an initial 2 min denaturation at 95°C, followed by 35 cycles of DNA amplification (45 sec at 95°C, 45 sec at 55°C, and 1 min at 72°C), and a final extension at 72°C for 10 min. Each reaction consisted of 0.5 μL of each primer (1 μM), 3.0 μL of doubly distilled DNA-free water, 6 μL of GoTaq® Green Master Mix (1X; Promega, Madison, Wisconsin, U.S.A.), and 2 μL of the DNA extraction. Amplified fragments were separated by electrophoresis in 1 percent agarose gels. For qPCR, we followed the recommendations of Hyatt et al. (2007) and Boyle et al. (2004). DNA was extracted using PrepMan Ultra (Thermo-Fisher Scientific, Waltham, Massachusetts, U.S.A.). Each real-time PCR reaction consisted of 0.8 μL (18 μM) of each primer ITS1 (5'-CCCTGTATAATACGTGTGCGCATATGC-3') and 5.8S (5'-AGCCAAGATCCGTGTGCAAA-3'), 10 μL of TaqMan, 1.0 μL (5 μM) of MGB Probe, 2.0 μL Exo IPC mix, 0.4 μL Exo IPC DNA (ThermoFisher Scientific), and 5.0 μL of the DNA extract. Amplification conditions consisted of 2 min at 50°C, 15 min at 95°C followed by 50 cycles of 15 sec at 95°C, and 1 min 60°C. Products were run on a BIO-RAD CFX96 PCR machine (Hercules, California, U.S.A.) and a BIO-RAD DNA Engine with CHROMO 4 Alpha block assembly.

REPRODUCTIVE MODES AND BD PRESENCE.—The degree of water dependence during an amphibian’s lifetime varies with the reproductive mode of the species, and those with aquatic reproductive strategies appear to be more susceptible to decline (Bielby et al. 2008). Following Crump (1974, 2015) and Duellman and Trueb (1986), we categorized our study species into four reproductive modes: (1) eggs and feeding tadpoles living in lentic water (N = 1164 individuals in 49 species); (2) eggs in foam nests with aquatic feeding tadpoles (N = 179 individuals in 19 species); (3) terrestrial eggs and aquatic feeding tadpoles (N = 554 individuals in 46 species); and (4) terrestrial eggs that hatch into froglets (N = 979 individuals in 98 species). Prior to performing a chi-square test, we reclassified these reproductive modes in two broad categories: (A) Aquatic, including reproductive modes 1–3 (N = 1897 individuals in 114 species), and (T) Terrestrial including reproductive mode 4 (N = 979 individuals in 98 species). We estimated prevalence of infection and 95 percent Bayesian credible intervals (CIs) using the ‘pwr’ (Champley 2015) and ‘binom’ (Dorai-Raj 2014) packages in R v. 3.1.2 (R Development Core Team 2008).

PREDICTING BD PRESENCE USING SPECIES DISTRIBUTION MODELS.—Species distribution models (SDMs) allow for predicting geographic distributions based on data about an organism’s presence combined with a set of environmental layers. To predict which areas within Colombia present abiotic environmental conditions suitable for Bd, we built an SDM based on geographic localities that tested positive for the pathogen. In order to minimize bias due to spatial clustering of presence localities (Peterson et al. 2011), we randomly selected and removed 80 percent of points in two regions with numerous geographically proximal presences (i.e., Norte de Santander and Chocó departments for which 14 and 2 localities were removed, respectively). The remaining points were at a minimum distance of 5 km from each other. Thus, we were left with 42 Bd-positive localities for model construction, including 32 localities representing new locality records in Colombia plus ten published localities based on.
histology (Ruiz & Rueda-Almonacid 2008, Velásquez-Escobar et al. 2008) or PCR (Urbina & Galeano 2011, Flechas et al. 2012, Vásquez-Ochoa et al. 2012, Acevedo et al. 2016a,b). We limited our study to Colombia which encompasses a tremendous variety of environments that can be considered representative of at least some of the environments found in neighboring countries that might share the same or closely related strains of Bd. Furthermore, almost no surveys on chytrid presence exist in the eastern lowlands of Colombia (Llanos Orientales) or the Colombian Amazon, except two Bd-negative localities sampled in Casanare (Table S1). Since undersampled areas may bias the SDM output (Barbet-Massin et al. 2012), we decided to exclude these areas from our study. Thus, we recognized that with limited geographic coverage, our models may be underpredictions, but as our environmental sampling was relatively wide, we expected this underprediction to be minor.

Our environmental variables consisted of the 19 bioclimatic variables obtained from the WorldClim database (Hijmans et al. 2005). These variables are derived from just two types of climatic data, temperature and rainfall, which are spatially correlated (Xu & Hutchinson 2010). We extracted values for all 19 variables from 10,000 random points over the study landscape and performed a two-tailed Spearman correlation test between all pairwise combinations of variables. We considered pairs of variables with a correlation coefficient ≥ 0.75 as containing a redundant variable. For each pair of redundant variables, we preferred to remove those variables that (a) were more often correlated with additional variables, (b) related to averages rather than extremes, or (c) were regarded as less relevant to host or pathogen biology. The new dataset of 10 variables included the following: annual mean temperature (AMT, BIO1), precipitation seasonality (PS, BIO15), precipitation of wettest quarter (PWeQ, BIO16), mean diurnal temperature range (MDTR, BIO2), isothermality (IT, BIO3), temperature seasonality (TS, BIO4), mean temperature of warmest quarter (MTWaQ, BIO10), annual precipitation (AP, BIO12), precipitation of driest month (PDM, BIO14), and precipitation of warmest quarter (PwaQ, BIO18).

The models were fit using a machine learning algorithm implemented in MaxEnt 3.3.3 (Phillips et al. 2006) based on 80 percent of the data for model construction and 20 percent for model testing (Phillips & Dudík 2008). We used the area under the curve (AUC) (Phillips & Dudík 2006) to measure the predictive accuracy of the model in terms of sensitivity and specificity. AUC values generally range from 0.5 (prediction no better than random) to 1 (perfect discrimination) (Fielding & Bell 1997). For easier interpretation of estimated probabilities of occurrence, we present the predicted distribution of Bd as a binary map of presence/absence. For this, we selected as our threshold the lowest prediction for training data above the 10th percentile (T10, Pearson et al. 2007), i.e., selecting the lowest prediction after eliminating 10 percent of the points as a correction for potential sink populations and georeferencing errors (Barbet-Massin et al. 2012). Climatic preferences of Bd were inferred by extracting values of our ten bioclimatic variables from 10,000 random points from the binary map and comparing the values of those taken from sites predicted as suitable versus those predicted as unsuitable.

RESULTS

We surveyed 81 localities for Bd and found 2876 individual amphibians comprised 2812 frogs and toads, 63 salamanders, and one caecilian (Table S2). The sampling represented 14 taxonomic families and included 170 identified species plus 49 unidentified morphospecies (recorded as ‘sp’). Bd was detected in 43 localities in altitudes ranging from 0 to 3200 m (Fig. 1). A total of 338 (11.7%) individuals from 70 species (47 identified species plus 23 unidentified but unique sp.) in 12 taxonomic families tested positive for the pathogen (Fig. 2). Bd was diagnosed through end-point PCR ($N = 1743$ swabbed amphibians with 257 positives for a prevalence = 14.7%, CI = 13–16%) and qPCR ($N = 1133$ animals including 81 positives for a prevalence = 7.14%, CI = 5.0–8.0%).

The chytrid fungus was detected on frogs with reproductive modes ranging from total independence from standing water bodies to species that lay eggs in water where the tadpoles remain until metamorphosis. Thirteen salamanders (genus Bolitoglossa) were diagnosed as Bd positive. We found significant differences between species with terrestrial and aquatic reproductive modes, with the highest proportion of infected individuals in species with terrestrial reproductive strategies ($P < 0.001$). Fifteen percent (CI = 12.9–17.5%) of individuals with terrestrial reproductive mode were diagnosed as Bd positive, versus 10 percent (CI = 8.7–11.4%) of individuals with aquatic reproductive modes.

According to the SDM, the potential distribution of Bd in Colombia is broad, and, although predicted absences are more frequent at lower altitudes (~0–300 m), Bd presence is predicted.

FIGURE 2. Number of infected individuals per taxonomic family of amphibian. Red bars denote the number of individuals that tested positive for Batrachochytrium dendrobatidis (Bd). Blue bars denote the number of individuals for which Bd was not detected. Bd was detected in 338 of 2876 individuals sampled. Asterisks denote families with terrestrial reproductive mode.
at all elevations including the lowlands (Fig. 3A). The SDM based on ten bioclimatic variables was a sufficient predictor of \(B. dendrobatidis \) presence: the AUC was 0.736 for training data and 0.768 for test data, which is above the 0.75 threshold for models considered to have good predictive power (Fielding & Bell 1997). Furthermore, our models had 0 test omission rates when using both the minimum training presence threshold and the T10 threshold. Four variables together had a 91 percent contribution to the SDM, i.e., AMT, PDM, TS, and MDTR, with the first variable alone explaining 56.4 percent of variation in the model, and the latter variables explaining 17.8 percent, 9.1 percent, and 7.5 percent, respectively. Using the binary prediction of \(B. dendrobatidis \) presence with the T10 threshold (Fig. 3B), we were able to estimate the climatic space suitable versus unsuitable for \(B. dendrobatidis \). Our analyses suggest that the strain or strains of \(B. dendrobatidis \) in Colombia tolerate a broad range of temperatures, with minimum mean annual temperatures around 0°C and maximum around 30°C. Predicted absences accumulated at higher mean annual temperatures (Fig. 4A–C). In Colombia, \(B. dendrobatidis \) differentially occurs at sites with higher precipitation during the driest month (Fig. 4C,D,F), lower temperature seasonality (Fig. 4B,E,F), and tolerates a wide range of variation in diurnal temperature (Fig. 4A,D,E). However, these variables also show a high level of interaction in determining the preferred climatic conditions of \(B. dendrobatidis \) (Fig. 4).

DISCUSSION

Our study represents the first attempt to identify geographical areas with higher environmental suitability for \(B. dendrobatidis \) and thus higher estimated risk of chytridiomycosis for amphibians in Colombia, one of the most species-rich countries in the world. We found \(B. dendrobatidis \) in essentially all regions surveyed and ranging vertically from 0 to 3200 m. Not surprisingly, surveyed sites in the Andean mountains were broadly infected with \(B. dendrobatidis \), as were the lowlands of the Pacific Coast and Andean foothills. Specific patterns of climatic co-variation with \(B. dendrobatidis \) presence included finding that annual mean temperature (AMT), precipitation of the driest month (PDM), mean diurnal temperature range (MDTR), and temperature seasonality (TS) were the most important environmental correlates of \(B. dendrobatidis \) occurrence (Fig. 4). In addition, our data reveal an effect of reproductive mode on the probability of \(B. dendrobatidis \) infection, suggesting that species with terrestrial reproduction are more prone to infection than species for which reproduction occurs in close association with bodies of water. In our dataset, terrestrial-breeding species are mostly represented by the predominantly montane genus, \(Pristimantis \). Thus, elevation and reproductive mode may be somewhat confounded. In addition, the pattern of higher \(B. dendrobatidis \) prevalence in terrestrial breeders found for the full dataset holds only for samples diagnosed with qPCR (26% terrestrial vs. 4% aquatic). For samples diagnosed with end-point PCR, the difference in prevalence is slight but reversed (13% terrestrial vs. 16% aquatic). The diagnostic technique could thus be confounding the pattern of prevalence of \(B. dendrobatidis \) between reproductive modes.

Temperature has been hypothesized to be the most important parameter affecting the distribution and prevalence of \(B. dendrobatidis \) in the wild (Lips et al. 2008, Woodhams et al. 2008). In support of this hypothesis, we found that annual mean temperature and mean diurnal temperature range (AMT and MDTR) are the two
most important predictors, with AMT being the single most important parameter predicting Bd occurrence in Colombia, explaining 56.4 percent of variation. In addition, our study predicts a high incidence of the fungal pathogen in areas where AMT exceeds the physiological limit previously reported from laboratory experiments (Piotrowski et al. 2004). We detected a wide range of temperatures suitable for Bd in the wild (Fig. 4A–C). Assumptions about the thermal biology of Bd are based on limited information from laboratory experiments and based on a single strain (Piotrowski et al. 2004). However, Colombia might harbor more than one strain, and if so, it is important to determine if their physiological requirements vary, especially in environmentally diverse regions of the Neotropics. Furthermore, the temperature in the microhabitats where frogs and their pathogens actually live might be considerably cooler than the macroscale temperatures reported in WorldClim (Kearney et al. 2014). Thus, more detailed research is needed on microclimates to better understand why Bd surviving and infecting species that occur in areas where thermal conditions exceed the optimal requirements for its survival (Puschendorf et al. 2009). In addition, the physiological ability of some amphibians to tolerate higher temperatures might impose restrictions on the pathogen’s distribution, making some areas unsuitable for its establishment, and thus imposing low infection intensities or low prevalence of Bd (Nowakowski et al. 2016).

In addition to AMT and MDTR, our results suggest that low precipitation (i.e., precipitation of the driest month, PDM) plus seasonality in temperature (TS) and precipitation (PS) are good predictors of the presence (or, rather, absence) of the fungal pathogen. Bd seems to be more prevalent in areas with lower temperature seasonality and higher precipitation of the driest month. As a consequence of the imminent global climate change, climatic seasonality will potentially increase in coming years, as well as the frequency of extreme events such as droughts (IPCC 2014). These unusual events might have an impact on Bd survival and performance. Therefore, additional research that evaluates how changes in climatic conditions, especially seasonality in temperature and precipitation, affect the performance of different strains of the pathogen will become extremely relevant. Alterations in climate may promote the evolution of Bd (e.g., faster growth or higher pathogenicity). Thus, some amphibian populations that appear to be stable might suffer indirectly from

FIGURE 4. Bivariate climatic spaces predicted to be occupied (red) and not occupied (blue) by the fungal pathogen, *Batrachochytrium dendrobatidis*, according to a species distribution model. Kernel density curves indicate the predicted probability of absence (blue) or presence (red) of the fungus along the environmental gradient of the corresponding variable.

Flechas et al.
environmental fluctuation through its effect on *Bd*, while other amphibian populations may occupy ‘refuges’ where *Bd* cannot persist because of its physiological restrictions (Buschendorf *et al.* 2011).

Most field research and surveys of *Bd* have been conducted at middle and high elevations, where declines were initially observed (Lips 1998), but recent reports of *Bd* in the lowlands suggest we need to survey more widely (Brem & Lips 2008, Krieger & Hero 2008, McCracken *et al.* 2009, Kilburn *et al.* 2010, Flechas *et al.* 2012, Whitfield *et al.* 2012, Zumbado-Ulate *et al.* 2014). *Bd* should be considered a threat to species occurring at low elevations as well, although population declines have been rarely reported (Kilburn *et al.* 2010, Flechas *et al.* 2015). In this study, 19 of 32 surveyed localities in the lowlands below 1000 m, and 13 of 25 below 500 m tested positive for *Bd* (59% and 52% of sites, respectively). Since accurate SDMs require sampling that covers the gradient of host species’ environmental tolerances (Boria *et al.* 2014), including these lowland localities in our analyses should increase the predictive accuracy in the Andean region, which is recognized for its topographic heterogeneity leading to complex environmental conditions.

To identify the suite of environmental conditions optimal for *Bd* growth and dispersal, various studies have modeled *Bd* distribution at local and global scales. Ron (2005) suggested that montane (above 1000 m) forests of the Colombian Andes represent suitable regions for *Bd*, in contrast to the Colombian savannas (Llanos) and the Choco tropical rainforests. More recently, James *et al.* (2015) also predicted the northern Andes should be one of the most suitable areas for the establishment of the pathogen. Here, we predict low suitability for *Bd* in the Caribbean region (Fig. 3), probably due to relatively dry and highly seasonal conditions, although this result might also be biased because the low sampling in this area (only two localities). In contrast to previous models (Ron 2005, James *et al.* 2015), however, our model predicted relatively high suitability for *Bd* in the lowlands of the wet Pacific coast, suggesting that *Bd* is more widely distributed than previously appreciated. This information emphasizes the need to regularly survey lowland areas, especially humid lowlands, and assess the effects of the pathogen on amphibian populations.

In addition to abiotic climatic parameters, natural history attributes intrinsic to amphibian species have been hypothesized to influence their susceptibility to *Bd* infection and possible declines. These traits include clutch size, habitat specialization, and water dependence (Williams & Hero 1998, Hero *et al.* 2005, Bielby *et al.* 2008). Given that *Bd* is an aquatic pathogen and that its motile zoospores need a moist substrate to move between hosts (Berger *et al.* 2005), species that spend more time in water are expected to have higher exposure to the pathogen, and thus are considered to be at greater risk of chytridiomycosis (Lips *et al.* 2005). Previously, species with reproductive strategies associated with water were thought to be more prone to infection than those not needing water to complete their life cycles (Bielby *et al.* 2008, Lötters *et al.* 2009), in part, because most declines and extinctions of amphibians have been observed in species with aquatic reproduction (Bustamante *et al.* 2005, La Marca *et al.* 2005, Coloma *et al.* 2010, Catenazzi *et al.* 2011). Although water dependence has been considered a key factor that increases the probability of infection, some recent studies have found the opposite scenario, where species with terrestrial reproductive modes exhibited higher *Bd* prevalence than aquatic ones (Gründler *et al.* 2012, Guayasamin *et al.* 2014). Our study supports the latter pattern, where species with direct development exhibited a higher prevalence of infection.

Although our initial goal was to predict *Bd* occurrence for the entire country of Colombia, the paucity of records from the eastern savannas (Llanos) and the Amazon basin constrained our geographic scope. Nonetheless, our study provides a reliable overview of the potential distribution of *Bd* in Colombia and draws the attention to the need for additional surveys in these poorly sampled areas. Our limited sampling revealed interactions among climatic variables that together define *Bd* presence. For example, we found that regions with temperatures above 25°C are most likely to be unsuitable for *Bd*, yet if precipitation during the driest month rises to 10–20 mm, *Bd* could persist in that area (Fig. 4C). If global climate change led to increased rainfall in these warm regions, *Bd* could potentially expand its geographic range and thus infect new populations or species of amphibians.

Despite its limited geographic scope, our study provides a dense sampling that allowed us to recognize heretofore-unappreciated variation in observed and predicted *Bd* prevalence among lowland sites. For example, the Choco lowlands of the Pacific coast, previously thought to have a very low probability of *Bd* occurrence, may in fact be facing a major threat with many positive localities (Flechas *et al.* 2015). Given that the Choco region hosts high amphibian biodiversity, we highlight the urgent need to develop a monitoring program for the Pacific lowlands of Colombia. Finally, and according to the results reported by Becker *et al.* (2016), where *Bd*-positive samples with high infection loads were found in areas of predicted low suitability in the Amazonia, we suggest that future *Bd* surveys should be extended into the Colombian Amazon, which remain undersampled. Our work here shows that for humid lowland sites, this assumption is false. Thus, humid regions of Amazonia may also be adequate for the establishment of *Bd*. The information presented here should be used as a baseline to develop new studies that examine undersampled areas and evaluate amphibian population status in places where *Bd* is already present and inform future conservation actions.

ACKNOWLEDGMENTS

This study was completed with financial support from ECOPE-TROL (grant 156-09 to AJC, SVF, and AA), US Fish & Wildlife Service—Wildlife without Borders (96200-0-G228 to AJC), Association of Zoos and Aquariums—Conservation Endowment Fund (08-836 to AA and SVF), Conservation International Critically Endangered Species Fund (to SVF), Conservation Leadership Program (Project ID 0621310 to AAA, and Project ID 070207 to LARS), COLCIENCIAS (1121-659-44242, agreement 553 to AAA), Vicerrectoría de Investigaciones at the Universidades
del Valle, Vicegerencia de Investigaciones at the Universidad Tecnológica de Chocó, Vicegerencia de Investigaciones at Universidad de Pamplona, Conservation International Colombia (Agreement 545), and Corporación Autónoma Regional del Valle del Cauca (CVC). For assistance in the field, we thank L. M. Arenas, O. Armesto, L. S. Barrientos, A. Batista, C. Burbano, R. Coral, G. Corredor, A. Dapper, L. M. Escobar, T. Escovar, C. Esquivel, D. M. Galindo, J. A. Hernández, D. J. Lizcano, E. J. López, J. Méndez, J. S. Mendoza, F. L. Meza, D. Moen, A. Muñoz, J. E. Ortega, J. Ospina, N. R. Pinto-Sánchez, E. P. Ramos, C. Silva, K. L. Silva, F. Vargas-Salinas, R. S. Ramírez-Valdez, A. A. Velásquez, and B. E. Velásquez-Escobar. We thank V. Ramírez for assistance in the laboratory. We thank F. Brown, C. González, and L. M. Arenas for helpful comments and suggestions that greatly improved this article. We thank Proves Foundation, San Pedro de la Sierra community, and the Indigenous community from La Sierra Nevada de Santa Marta for their support during the fieldwork. Research permits were provided by the Colombian National Parks authority, Ministry of the Environment, and the National Authority for Environmental Licenses (ANLA), under permits DTSO 019-09, DTSO 001-09, and No 10-07032012 (to SVF), permit No 15, July 26th, 2010 (to AJC), resolution No 0255, March 12th, 2014 (to AMPT), resolution CorpMag No 425, February 2015 (to LARS), and DTAN 001-13 (to AAA).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article:

TABLE S1. Summary of sampled sites and infection prevalence per site.

TABLE S2. Results of Bd diagnoses for individual species including locality, reproductive mode, classification (terrestrial/aquatic), and diagnostic technique used.

LITERATURE CITED

Distribution of Bd in Colombia

